FURTHER MATHEMATICS/MATHEMATICS (ELECTIVE)

AIMS OF THE SYLLABUS

The aims of the syllabus are to test candidates'
(i) development of further conceptual and manipulative skills in Mathematics;
(ii) understanding of an intermediate course of study which bridges the gap between Elementary Mathematics and Higher Mathematics;
(iii) acquisition of aspects of Mathematics that can meet the needs of potential Mathematicians, Engineers, Scientists and other professionals.
(iv) ability to analyse data and draw valid conclusion
(v) logical, abstract and precise reasoning skills.

EXAMINATION SCHEME

There will be two papers, Papers 1 and 2, both of which must be taken.
PAPER 1: will consist of forty multiple-choice objective questions, covering the entire syllabus. Candidates will be required to answer all questions in 1 hours for 40 marks. The questions will be drawn from the sections of the syllabus as follows: Pure Mathematics - 30 questions Statistics and probability - 4 questions Vectors and Mechanics - 6 questions
PAPER 2: will consist of two sections, Sections A and B, to be answered in 2 hours for 100 marks.

Section A will consist of eight compulsory questions that areelementary in type for 48 marks. The questions shall be distributed as follows:
Pure Mathematics - 4 questions
Statistics and Probability - 2 questions
Vectors and Mechanics - 2 questions
Section B will consist of seven questions of greater length and difficulty put into three parts:Parts I, II and III as follows:

Part I: Pure Mathematics - 3 questions

Part II: Statistics and Probability
Part III: Vectors and Mechanics - 2 questions

Candidates will be required to answer four questions with at least one from each part for 52 marks.

DETAILED SYLLABUS

In addition to the following topics, more challenging questions may be set on topics in the General Mathematics/Mathematics (Core) syllabus.

In the column for CONTENTS, more detailed information on the topics to be tested is given while the limits imposed on the topics are stated under NOTES.

Topics which are marked with asterisks shall be tested in Section B of Paper 2 only.

KEY:

* Topics peculiar to Ghana only.
** Topics peculiar to Nigeria only

WAEC Syllabus - Uploaded by naijschools.com

	a+b $\sqrt{\prime}$ where a is rational, b is a positive integer and n is not a perfect square.	

WAEC Syllabus - Uploaded by naijschools.com

而		

WAEC Syllabus - Uploaded by naijschools.com
西

WAEC Syllabus - Uploaded by naijschools.com
西

(9) Permutation And Combinations.	(i) Simple cases of arrangements (ii) Simple cases of selection of objects.	$\begin{aligned} \log (a b)^{x} & =x(\log a+\log b) \\ & =x \log a b \end{aligned}$ *Drawing and interpreting graphs of logarithmic functions e.g. $y=a x^{b}$. Estimating the values of the constants a and b from the graph
		Knowledge of arrangement and selection is expected. The notations: ${ }^{n} C_{r}$, ${ }^{\prime}(\%)$ and ${ }^{n} P_{r}$ for selection and arrangement respectively should be noted and used. e.g. arrangement of students in a row, drawing balls from a box with or without replacements. n pr $=\mathrm{n}$! $\mathrm{Cr}_{\mathrm{C}}=\begin{gathered} (\mathrm{n}-\mathrm{r})!\mathrm{n} \\ \mathrm{n}!\mathrm{r}!(\mathrm{n}- \end{gathered}$ r)!
(10) Binomial Theorem	Expansion of $(a+b)^{n}$. Use of $(1+x)^{n} \approx 1+n x$ for any rational n, where x is sufficiently small. e.g (0.998) ${ }^{1 / 3}$	Use of the binomial theorem for positive integral index only. Proof of the theorem not required.
(11) Sequences and Series	(i) Finite and Infinite sequences. (ii) Linear sequence/Arithmetic Progression (A.P.) and Exponential sequence/Geometric Progression (G.P.)	e.g. (i) $u_{1}, u_{2}, \ldots, u_{n}$. (ii) $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots$ Recognizing the pattern of a sequence. e.g. (i) $\mathrm{U}_{\mathrm{n}}=\mathrm{U}_{1}+(\mathrm{n}-1) \mathrm{d}$, where d is the common difference. (ii) $U_{n}=U_{1} r^{n-1}$ where r is the common ratio.
	(iii) Finite and Infinite series. (iv) Linear series (sum of A.P.) and exponential series (sum of G.P.)	(i) $U_{1}+U_{2}+U_{3}+\ldots+U_{n}$ (ii) $\mathrm{U}_{1}+\mathrm{U}_{2}+\mathrm{U}_{3}+\ldots$. (i) $\mathrm{S}_{\mathrm{n}}=\left(\left(\mathrm{U}_{1}+\mathrm{U}_{\mathrm{n}}\right)\right.$ (ii) $S_{n}=([2 a+(n-1) d]$

WAEC Syllabus - Uploaded by naijschools.com

Prer		

(12) Matrices and Linear Transformation	*(v) Recurrence Series	(iii) $S_{n}=\frac{U_{1}\left(1-r^{n}\right)}{1-r}, r<1$ (iv) $\mathrm{S}_{\mathrm{n}}=\underline{U}_{1}\left(\mathrm{r}^{\mathrm{n}}-\underline{1}\right), r>1$. (v) Sum to infinity (S) = \qquad $\% \quad r<1$ Generating the terms of a recurrence series and finding an explicit formula for the sequence e.g. $0.9999=$ $\bar{*}^{+}+\underset{*_{\#}}{ }+\underset{*_{+}}{ }+\ldots$
	(i) Matrices	Concept of a matrix - state the order of a matrix and indicate the type. Equal matrices - If two matrices are equal, then their corresponding elements are equal. Use of equality to find missing entries of given matrices Addition and subtraction of matrices (up to 3×3 matrices). Multiplication of a matrix by a scalar and by a matrix (up to 3 x 3 matrices)
	(ii) Determinants	Evaluation of determinants of 2×2 matrices. **Evaluation of determinants of 3×3 matrices. Application of determinants to solution of simultaneous linear equations.
	(iii) Inverse of 2×2 Matrices (iv) Linear Transformation	e.g. If $A=\& \quad$, then $\mathrm{A}-1=\frac{1}{a d-b c} \cdot\left[\begin{array}{c} - \\ \& \end{array}\right]$

WAEC Syllabus - Uploaded by naijschools.com

		linding the images of points under given linear transformation

(13) Trigonometry	(i) Trigonometric Ratios and Rules	Determining the matrices of given linear transformation. Finding the inverse of a linear transformation (restrict to 2×2 matrices). Finding the composition of linear transformation. Recognizing the Identity transformation. (i) 10 reflection in the $\begin{array}{cc} 0 & -1 \\ x-\text { axis } & \end{array}$ (ii) $\left(\begin{array}{ll}-1 \\ 0 & 1\end{array}\right] \quad 0$ reflection in the y-axis (iii) 1 reflection in the line $=x(1) 0 y$ (iv) $\cos 5-\sin 5$ fornantisin $5 \cos$ clockwise rotation through θ about the origin. (v) $\left\{\begin{array}{cc}8925 & \sin 25 \\ 9 ; 25 & -8925\end{array}\right\}$ the general matrix for reflection in a line through the origin making an angle θ with the positive x axis. *Finding the equation of the image of a line under a given linear transformation Sine, Cosine and Tangent of general angles ($0^{\circ} \leq \theta \leq 360^{\circ}$). Identify trigonometric ratios of angles $30^{\circ}, 45^{\circ}, 60^{\circ}$ without use of tables. Use basic trigonometric ratios and reciprocals to prove given trigonometric identities. Evaluate sine, cosine and tangent of negative angles. Convert degrees into radians and vice versa.

WAEC Syllabus - Uploaded by naijschools.com

| | Application to real life situations
 such as heights and distances,
 perimeters, solution of triangles,
 angles of elevation and
 depression, |
| :--- | :--- | :--- |

WAEC Syllabus - Uploaded by naijschools.com

	(ii) Compound and Multiple Angles.	bearing(negative and positive angles) including use of sine and cosine rules, etc, Simple cases only. $\sin (A \pm B), \cos (A \pm B)$, $\tan (A \pm B)$. Use of compound angles in simple identities and solution of trigonometric ratios e.g. finding $\sin 75^{\circ}, \cos 150^{\circ}$ etc, finding tan 45° without using mathematical tables or calculators and leaving your answer as a surd, etc. Use of simple trigonometric identities to find trigonometric ratios of compound and multiple angles (up to 3A).
	(iii) Trigonometric Functions and Equations	Relate trigonometric ratios to Cartesian Coordinates of points (x, y) on the circle $x^{2}+y^{2}=r^{2}$. $f: x \rightarrow \sin x, g: x \rightarrow a \cos x+b$ $\sin x=c$. Graphs of sine, cosine, tangent and functions of the form $a \sin x+b \cos x$. Identifying maximum and minimum point, increasing and decreasing portions. Graphical solutions of simple trigonometric equations e.g. $a \sin x+b \cos x=k$. Solve trigonometric equations up to quadratic equations e.g. $2 \sin ^{2} x$ $-\sin x-3=0$, for $0^{\circ} \leq x \leq$ 360°. *Express $f(x)=a \sin x+b \cos x$ in the form Rcos ($x \pm$) or Rsin ($x \pm$) for $0^{\circ} \leq \leq 90^{\circ}$ and use the result to calculate the minimum and maximum points
(14) Co-ordinate Geometry	(i) Straight Lines	Mid-point of a line segment Coordinates of points which

WAEC Syllabus - Uploaded by naijschools.com

(15) Differentiation	(ii) Conic Sections	divides a given line in a given ratio. Distance between two points; Gradient of a line; Equation of a line: (i) Intercept form; (ii) Gradient form; Conditions for parallel and perpendicular lines. Calculate the acute angle between two intersecting lines e.g. if m_{1} and m_{2} are the gradients of two intersecting lines, then $\tan \theta=$ => =\#. If $m_{1} m_{2}=-1$, then the lines are perpendicular. *The distance from an external point $P\left(x_{1}, y_{1}\right)$ to a given line $a x$ + by ${ }_{1}$ \qquad $+c$ using the formula $d=\\|_{\#}$ $\#$ \#. Loci of variable points which move under given conditions Equation of a circle: (i) Equation in terms of centre, (a, b), and radius, r , $(x-a)^{2}+(y-b)^{2}=r^{2}$ (ii) The general form: $x^{2}+y^{2}+2 g x+2 f y+c=0$, where $(-g,-f)$ is the centre and radius, $r=\sqrt{ } \&+--$ Tangents and normals to circles Equations of parabola in rectangular Cartesian coordinates ($\mathrm{y}^{2}=4 \mathrm{ax}$, include parametric equations ($a t^{2}, a t$)). Finding the equation of a tangent and normal to a parabola at a given point. *Sketch graphs of given parabola and find the equation of the axis of symmetry.

WAEC Syllabus - Uploaded by naijschools.com

(i) The idea of a limit	(i) Intuitive treatment of limit.	

(16) Integration	(ii) The derivative of a function (iii)Differentiation of polynomials (iv) Differentiation of trigonometric Functions (v) Product and quotient rules. Differentiation of implicit functions such as $a x^{2}+b y^{2}=c$ **(vi) Differentiation of Transcendental Functions (vii) Second order derivatives and Rates of change and small changes ($\Delta \mathrm{x}$), Concept of Maxima and Minima (i) Indefinite Integral	Relate to the gradient of curve. e.g. $f^{1}(x)=$ $\lim _{C \rightarrow *}$ (ii) Its meaning and its determination from first principles (simple cases only). $\text { e.g. } a x^{n}+b, n \leq 3,(n \in I)$ e.g. $a x^{m}-b x^{m-1}+\ldots+k$, where $m \in I, k$ is a constant. e.g. $\sin x, y=a \sin x \pm b \cos$ x. Where a, b are constants. including polynomials of the form $\left(a+b x^{n}\right)^{m}$. $\begin{aligned} & \text { e.g. } y=e^{a x}, y=\log 3 x, \\ & y=\ln x \end{aligned}$ (i) The equation of a tangent to a curve at a point. (ii) Restrict turning points to maxima and minima. (iii)Include curve sketching (up to cubic functions) and linear kinematics. (i) Integration of polynomials of the form ax^{n}; n $\neq-1 . \quad \frac{x}{n+1}+c, n \neq-1$. i.e. $\int x^{n} d x$ $=\mathrm{E}>$ (ii) Integration of sum and difference of polynomials. e.g. $\int\left(4 x^{3}+3 x^{2}-6 x+5\right) d x$

WAEC Syllabus - Uploaded by naijschools.com

		$* *$ (iii)Integration of polynomials of the form $a x$ n, $n=-1$.

WAEC Syllabus - Uploaded by naijschools.com

而		

WAEC Syllabus - Uploaded by naijschools.com

WAEC Syllabus - Uploaded by naijschools.com

| | |
| :--- | :--- | :--- |
| | |
| | |
| | |

WAEC Syllabus - Uploaded by naijschools.com

| (viii) | Scalar (dot) product and its | |
| :--- | :--- | :--- | :--- |
| | | |

WAEC Syllabus - Uploaded by naijschools.com

(21)Dynamics		

1. UNITS

Candidates should be familiar with the following units and their symbols.

(1) Length

1000 millimetres $(\mathrm{mm})=100$ centimetres $(\mathrm{cm})=1$ metre (m).
1000 metres $=1$ kilometre (km)

(2) Area

10,000 square metres $\left(m^{2}\right)=1$ hectare (ha)

(3) Capacity

1000 cubic centimeters $\left(\mathrm{cm}^{3}\right)=1$ litre (I)
(4) Mass
1000 milligrammes $(\mathrm{mg})=1$ gramme (g)
1000 grammes $(\mathrm{g})=1$ kilogramme $(\mathrm{kg}) 1000$
ogrammes $(\mathrm{kg})=1$ tonne.

(5) Currencies

The Gambia	-	100 bututs (b) = 1 Dalasi (D)
Ghana	-	100 Ghana pesewas (Gp) = 1 Ghana Cedi ($\mathrm{GH} \downarrow$)
Liberia	-	100 cents (c) = 1 Liberian Dollar (LD)
Nigeria	-	100 kobo (k) = 1 Naira (${ }^{(\#)}$
Sierra Leone	-	100 cents (c) = 1 Leone (Le)
UK	-	100 pence $(p)=1$ pound ($£$)
USA	-	100 cents (c) = 1 dollar (\$)
ch Speaking territories		100 centimes (c) = 1 Franc (fr)

French Speaking territories 100 centimes (c) = 1 Franc (fr)
Any other units used will be defined.

2. OTHER IMPORTANT INFORMATION

(1) Use of Mathematical and Statistical Tables

Mathematics and Statistical tables, published or approved by WAEC may be used in the examination room. Where the degree of accuracy is not specified in a question, the degree of accuracy expected will be that obtainable from the mathematical tables.

(2) Use of calculators

The use of non-programmable, silent and cordless calculators is allowed. The calculators must, however not have a paper print out nor be capable of receiving/sending any information. Phones with or without calculators are not allowed.
(3) Other Materials Required for the examination

Candidates should bring rulers, pairs of compasses, protractors, set squares etc required for papers of the subject. They will not be allowed to borrow such instruments and any other material from other candidates in the examination hall.
Graph papers ruled in 2 mm squares will be provided for any paper in which it is required.

(4) Disclaimer

In spite of the provisions made in paragraphs 2 (1) and (2) above, it should be noted that some questions may prohibit the use of tables and/or calculators.

WAEC Syllabus - Uploaded by naijschools.com

